Chapter:

vector-differential-calculus

1. Find curl for \((\vec{r})=y^2 z^3 \vec{i}+x^2 z^2 \vec{j}+(x-2y)\vec{k}\).


2. The temperature of a point in space is given by T = x2 + y2 – z. An insect located at a point (1, 1, 2) desire to fly in such a direction such that it will get warm as soon as possible. In what direction it should move?


3. State wher given equation is a conservative vector.
G = (x3y) ax + xy3 ay


4. For function f = x2y + 2y2x, at point P(1,3), what is direction in which directional derivative is zero?


5. If W = x2 y2 + xz, directional derivative \( \frac{dW}{dl} \) in direction 3 ax + 4 ay + 6 az at (1,2,0).


6. Convert vector P to Cartesian coordinates where P = r ar + cos⁡θ aφ.


7. Find gradient of function W if W = ρzcos(ϕ) if W is in cylindrical coordinates.


8. What is divergence and curl of vector \(\vec{F}=x^2 y\vec{i}+(3x+y) \vec{j}+y^3 z\vec{k}\).


9. A vector field which has a vanishing divergence is called as ________


10. Find distance between A(10, 30,60) and B(8, 60, 90).


All Chapters

View all Chapter and number of question available From each chapter from Engineering-Mathematics

Differential Calculus

Differential Calculus

Partial Differentiation

Partial Differentiation

Maxima and Minima

Maxima and Minima

Curve Tracing

Curve Tracing

Integral Calculus

Integral Calculus

Multiple Integrals

Multiple Integrals

Ordinary Differential Equations – First Order & First Degree

Ordinary Differential Equations – First Order & First Degree

Linear Differential Equations – Second and Higher Order

Linear Differential Equations – Second and Higher Order

Series Solutions

Series Solutions

Special Functions – Gamma, Beta, Bessel and Legendre

Special Functions – Gamma, Beta, Bessel and Legendre

Laplace Transform

Laplace Transform

Matrices

Matrices

Eigen Values and Eigen Vectors

Eigen Values and Eigen Vectors

Vector Differential Calculus

Vector Differential Calculus

Vector Integral Calculus

Vector Integral Calculus

Fourier Series

Fourier Series

Partial Differential Equations

Partial Differential Equations

Applications of Partial Differential Equations

Applications of Partial Differential Equations

Fourier Integral, Fourier Transforms and Integral Transforms

Fourier Integral, Fourier Transforms and Integral Transforms

Complex Numbers

Complex Numbers

Complex Function Theory

Complex Function Theory

Complex Integration

Complex Integration

Theory of Residues

Theory of Residues

Conformal Mapping

Conformal Mapping

Probability and Statistics (Mathematics III / M3)

Probability and Statistics (Mathematics III / M3)

Numerical Methods

Numerical Methods / Numerical Analysis (Mathematics IV / M4)